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ABSTRACT 

The polynomial identities of certain subalgebras of matrices, over the Grass- 
mann algebra, are studied in terms of their cocharacters. Our present know- 
ledge of such characters for matrices over a field F (char F = 0) plays a role 
here, and some of these results are extended to these subalgebras. In particu- 
lar, we obtain bounds for the codimensions of these algebras (Theorem 0.1 
below). 

§0. Introduction 

The quant i ta t ive study o f  the set of  identities o f  a given P.I. algebra (in 

characteristic zero) is done by studying its codimensions  and its cocharacters 

or, equivalently its Poincar6 series. We shall assume the reader  has some 

familiari ty with the representat ion theory of  the symmetr ic  group S, ,  and with 

cocharacters and codimensions o f  P.I. algebras. 

The present work should be viewed as a first step towards calculating these 

series for certain K-semipr ime algebras which were in t roduced by Kemer  [7]. 

The K-pr ime algebras are ei ther Mk(F) = Fk, Mk(E) = Ek (E is the Grassmann 

algebra) or certain subalgebras E~,t __c Ek+t. These algebras play an impor tant  

role in the theory of  P.I. algebras. One consequence of  our  work here is the 

following: 

0.1. THEOREM. Let A be one of  the above algebras and let {c, (A)}~= j be its 

codimension series. Then there exist (explicit) constants a, cl, c:, gl and g2 such 

that for all n, 
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g'. a" < c,(A) < c2 Ca • = • • a n. 

In particular, the exponential growth of the codimensions {c,(A)} of such 
algebras is (explicitly) captured. The work of Kemer [7] highly motivates the 
study of these algebras. Following Gateva [6] we first summarize, in §1, 
Kemer's results. 

One of these algebras is Fk, which is clearly of central importance, and an 
extensive study has been made towards understanding its polynomial ident- 
ities. We therefore briefly summarize now some of the results about the 
eocharacters of Fk: 

Let z , (A)  be the (n-th) cocharacter of the algebra A, and write 

z , ( A ) =  ~, m~(A).xa 
~l~Par(n) 

(m~(A) ~ N are the multiplicities of the irreducible S. characters Z~ in z.(A)). It 
follows from [11] that 

z,(Fk) = E rnx(Fk).Zx. 
2~Par(n) 
h(~)<k" 

(h(2) < r if(21, A2,... ) and At+  I = 0 . )  

Write now 

~EPa~n) 2~ ~.Par(n) 

( ® is the Kronecker product). It follows from [4], [5] that if 2k: _-__ 2 then 

0.2. THEOREM. if/,1 = ma(F~). 

Thus, the problem of calculating z,(Fk) is essentially equivalent to that of 
calculating 

x, ® x~, 
#~Par(n) 
h(~)<k 

a problem which is still open (except for k = 2) and seems to be very hard. 
Nevertheless, these results imply. 

0.3. THEOREM [15]. Let a, ~-- b, indicate that 

l ima_, = I. 
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Then 

where 

and 
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(-"~)k-l (1) (k2-1)12 1!" .(k 1)['k (k2+4)/2 
C ~ • " - -  
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g = (k  2 - 1)/2. 

Thus Theorem 0.1 is an extension of the above theorem. 
We now describe the main results of this paper. Identify a partition 2 with its 

Young diagram, and let 

2 =(21,22 . . . .  ) ~ H ( k , l ; n )  (i .e. ,  2k+l  _--< l)  

such that 2 k ~ I. Then 

where h ~ )  _-< k and h(v) <= 1 (see [2]), and we denote 2k-- (g, v'). 
It follows from [9], [3] that 

xn(Ek) = 2 m~(Ek) "Xx. 
2 ~H(k2,k2;n ) 

0.4. THEOREM. Our main result reads as follows: 
Let 2 = (21, 42 . . . .  ) E H (k 2, k2; n ), 2k 2 >--_ k 2 and denote 2 b-, (~, v'). I f  g and v 

are large enough, then m~(Ek)>= 1. [We do believe that mx(Ek) is close to 

m~(Fk)'mv(Fk).] 

The proof requires a considerable amount of calculations with various 
idempotents in FSn, viewed as polynomials, and with substitutions in Ek. The 
right choices of idempotents and substitutions yield the proof. 

The inequality m~(Ek) >= 1 and the asymptotics of the degrees d~ -- deg0f~) 
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imply the lower bound 

cl (2k2) n N cn(Ek) 

with ct, g~ explicit. Since Ek = Fk ® E, 

cn(Ek) <-_ c (rk)" c.(E), 
and a similar upper bound for cn(Ek) follows from the (asymptotically) known 

series c~(Fk) and c,(E). 
This proves Theorem 0.1 for the algebras Ek. 
The results of [1], [2], [3] and [7] allow us to extend Theorem 0.1 to the 

algebras Ek,~. Finally, it is not difficult to extend these results to any K- 
semiprime algebra. 

§1. Kemer's results 171 

Let A k = M k ( A  ) denote the k × k matrices over the algebra A (any A). Let 
E = E(V) be the Grassmann (Exterior) algebra of a countable dimension 
vector space Vover a field F, char F = 0. By considering the length of the basis 
elements of E we have that 

E =Eo~E1,  

where E0 (resp. E~) is spanned by the elements of even (resp. odd) length. 
Given k, l > 0, we denote by Ek,t = Mk,t(E) the following subalgebra of Ek÷t: 

 .(AIB  I 
Ek,t = [\CI D] A E Mk(Eo), DE M~Eo), a is k × I and C is I × k, 

both with entries in Et.} 

We consider now algebras with 1. Kemer defines the property of K- 
semiprimeness as follows: 

K-ideals (Kemer calls them T-ideals) are obtained from Tideals by taking all 
possible evaluations. 

The relatively free algebra in a given variety is called K-semiprime if it does 
not contain nilpotent K-ideals, and in that case, the variety itself is called K- 
semiprime. K-primeness is defined in an analogous way and a K-semiprime 
algebra is a finite direct sum of K-prime algebras. A. Berele showed me that K- 
primeness is equivalent to the following property: 
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K-primeness: The algebra A is K-prime if it satisfies the following property: 

Let f(xl . . . .  , Xr), g ( x l , . . . ,  Xs) be polynomials such that 

f(Xo . . . . .  xr_ l )Xrg(Xr + l . . . . .  Xr +s) 

is an identity for A, then either f or g is an identity for A. Equivalently, an 
algebra A is K-prime if no product of non-zero K-ideals of A is zero. 

In the work of Kemer [7], the following two theorems are relevant to this 
paper: 

1.1. TtlEOREM [Kemer]. Any K-prime variety is generated by one o f  the 

following algebras: Fk = Mk(F); Ek ---- Mk(E) = Fk ® E; Ek,t ---- Mk,t(E) where 
l < k .  

Let A, B be two P.I. algebras. Denote A -~ B if they satisfy the same set of 
identities. 

1.2. THEOREM[Kemer]. 

(1.2.1) 

(1.2.2) 

(1.2.3) 

The next equivalences hold: 

E1,1 ~" E ® E,  

Ek,l ® E " Ek +l, 

Ek,t ® Ep,q ~ Ekq+t,,k,+tq. 

The importance of these algebras lies in the following: 

1.3. THEOREM [Kemer]. Every relatively free algebra A has a maximal  

nilpotent K-ideal I such that A / I  is K-semiprime. 

§2. Some preliminaries 

2.1. The partitions 2~-m decompose FSm" 

FSm= ~) Ia, 
,l.l-rn 

Ia minimal two-sided ideals. 
A Young tableau Ta of shape 2 defines the two subgroups Rr,, Cr~ c_ Sin: 

Rr, = the row permutations of T~, 
Rr~ = the column permutations of Ta. 
Denote 

/ ~ =  ~ p, Cr~ = ~ sgn(q).q. 
pER~ qEC~ 
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Usually, one constructs now, in FSm, the primitive idempotent  

er~ = a .  l~r~ " Cry, 

Isr. J. Math. 

where a-~ is the product of the hook numbers of 2. Such idempotents, that 
correspond to the standard tableaux of shape 2, completely decompose Ia: 

I~ = ~)  ( F S , , ) ' e r r  
T 2 standard 

Note that one can also construct fr, = a .  Cr,"/~r,; these again are primitive 
idempotents  with the same property as the er,'s. 

2.2. Given a = Za~s. aatr E FS, ,  (a ,  E F) ,  we identify a with the polynomial 

a ~ - a ( x l  . . . . .  x ~ ) =  ~ a , M ~ ( x l  . . . . .  xm), 
aES,, 

where Ma(x~ . . . . .  Xm) = xo~)" • "Xo~,,). This applies, in particular, to the idem- 

potents er, = er,(x~, . . . , Xm). 

2.3. x , ( A ) =  Ya~,ma(A)z~ is the cocharacter of the P.I. algebra A with 
multiplicities m~(A ); Za is the irreducible S, character that corresponds to 2. 

2.4. If mu(A) ÷ 0 then, for some tableau Tu, 

er,(x~ . . . .  , x , ) ~  Id(A) = Q, 

and for some - -  possibly another - -  tableau 7~, 

fc; (x, . . . .  , x , )  qi a ,  

Id(A ) = Q being the identities of A. 

2.5. The results of[4], [5], imply that for most/t 's ,  mu(Fk) v~ O. In particular, 
let n > 2k 2, n = wk 2 + r, 0 < r < k 2, and define 

/~ = ( w  + r, w, w , . . . ,  w)~-n. 

k 2-  1 

It then follows from [5] and from [12, Th.l.3] that m,(Fk)>= 1: for an 
appropriate choice of Tu, e r , ( x ~ , . . . ,  x , )  (orfr,(x~ . . . . .  x,)) is not an identity 
of  Fk. Thus, for generic k × k matrices X~ . . . .  , X , ,  eru(X~ . . . . .  X , )  4 :0  

(ft,(X, . . . . .  X.) * 0). 

2.6. REMARK. Let v~-n, T, a tableau of shape v, T'~ the conjugate tableau 
(of shape v', the conjugate partition). Clearly, Rr; = Cr, and Cr; = Rr, .  
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2.7. Reca l l  t ha t  E = E ( V )  is the  G r a s s m a n n  a lgebra  o f  a c o u n t a b l e  d i m e n -  

s iona l  v e c t o r  space  V. Le t  v~, v2, . . .  d e n o t e  a bas i s  o f  V. 

LEMMA. Le t  Tv be a tableau,  T'v its conjugate ,  with their corresponding e 

a n d  f idempoten ts  as in 2.1. Also,  let V = s p a n F { V l ,  V2 . . . .  }, E = E ( V )  as  

above,  a n d  consider E ®F F ( x ) . Then  

er;(Vt ® Xl, • • • ,  V~ ® Xn) = (VI" • • Vn) ® fr,(XL • • •,  X~). 

PROOF. Since v,(i)" • • v~(~) = sgn (a )v l .  • • v~ (vivj = - vjvi), hence  

M~(vl ® xl ,  . . . , v~ ® x~) = vl " " " v~ ® sgn(a)Mo(x l ,  . . . , x~). 

T h u s  

er;(v ® x )  = ~ sgn(q)Mpq(V ® x )  
P=qEC__r v 
Y=PERr~ 

= ( v t . . . v , )  ® ~ sgn(p) . sgn(~p)M~p(x)  
p~Rr 
recT~ 

= ( v , . . .  vn) ® E sgn(7)M,p(x)  
P,7 

= ( v l " "  v,)  @ fr ; (x) .  

T h e  Cape l l i  iden t i ty  fo r  Fk will p lay  an  i m p o r t a n t  role  in w h a t  fol lows.  

2.8. Recal l  t ha t  the  Capel l i  p o l y n o m i a l  dn+ ~[x; y ]  is de f ined  as fol lows:  

dn + l[x; y]  = ~ sgn(a)xo(l~vlx,(2)Y2.. "ynXa(n + I). 
aES, 

Recal l  also tha t  dk,+ l[x; y]  is an  iden t i ty  fo r  Fk. 

LEMMA. Le t  R be any  F-algebra,  

B l  . . . .  , Bk~ERk = M k ( R )  a n d  

Then  

D1 . . . . .  Dk' + l ~ Fk. 

PROOF. 

C~ E Fk. T h e  l e m m a  n o w  fol lows s ince  

dk' +~[D~, . . . , Ok2+~; r~ ® C~ . . . . .  rk" ® Ck2] 

= ( r , . .  "rkO @ dk'+t[Dt . . . . .  Dk'+,; C i , . . . ,  CK'] = O. 

dk2+l[Dl . . . . .  Dk '+l ;  Bl . . . .  , Bk'] = 0. 

Since dk,+~ is mu l t i l i nea r ,  we  m a y  a s s u m e  tha t  B~ = r I ® Ci, r i ~ R ,  

Q . E . D .  
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2.9. DEFINITION. Let Ul, u 2 . . . .  be basis elements of  E(so  either of  even or 

of  odd length; (§1)) and u = (ul . . . . .  urn), then define 

# u  = card{i ] 1 _-< i -_< m, ui is of even length}. 

We shall consider substitutions in Ek of the form 

ui --" ui ® Di, 

where u = (u¿ , . . . ,  urn) as above, and Di ~ F k .  

2.10. LEMMA. Le t  h(Xl . . . . .  xs) be a mul t i l inear  po l ynomia l ,  let k 2 + 1 < 

l < s, 1 < iL < • • • < it < s a n d  as sume  h is a l ternat ing in x~, . . . . .  x,,. Subst i-  

tute x~--- ,u,®D~ l < i < s ,  as in 2.9. I f  # ( u ,  . . . . . .  u, , )>=k2+l  then 

h(Ul ® D1 . . . . .  u, ® 1),) = O. 

PROOF. W.L.O.G. ij = j  and u~ . . . . .  Uk2+~ are of even length; we can 

assume uj . . . . .  Uk2÷~ = 1. Since h ( x )  is in particular alternating in 

x ~ , . . .  ,Xk2+l we can write 

h(x l  . . . . .  xs) = E a "31o" dk2+,[Xl . . . . .  Xk,+ i; M b  . . . , Mk,IMk2+~ 

where in each summand, the M / s  are either equal to 1 or are monomials in 

some of the x/s.  Substituting x,----u~ ® D~, the M~'s become ./t4~ E E k ,  while 

xi---,D~ E F k  if 1 < i < k 2 + 1. The proof now follows from Lemma 2.8. 

Q.E.D. 

2.11. Recall from 2.1 that for O~-m and a tableau To, we can write 

o~- ' e r , ( x )=  Y~ p C r o ( X , , . . . , X m ) =  Y, C T , ( X p ( l ) , . . . , X p ( m ) ) .  
pERt o pERt o 

Correspond i with x,, then the entries of  the j- th column of To correspond 

to a subset of xt . . . . .  Xm, and C'r(X) is alternating in that subset. If o) is the 

number of columns of To, then Cr,(x) is a polynomial in to subsets of  variables, 

and is alternating in each such subset. Clearly, the same applies to 

C'T. (Xp(I) . . . . .  Xp(m)). 

2.12. LEMMA. Le t  OFm with To a tableau with k z co lumns .  Le t  u = 

(Ul . . . . .  u,,) as in 2.9, with ~ u ~ k  4, a n d  let X t , . . . , X , ,  be generic k × k  

matrices.  Then  

PROOF. 

en (u  ® X )  = er,(u~ ® Xl . . . . .  Um® Am) = 0. 

By the above description of a- l e ro (x )  and since 



Vol.  58, 1987 I D E N T I T I E S  O F  M A T R I C E S  359 

:~6 (Up(l) . . . . .  Up(m) ) = #(Ul, • • •, Urn), it suffices to show that  Cr,(u ® X) = O. 
Now, Cry(x) is alternating in each of  its k 2 subsets of  variables, and since 

u =~ k 4, there is at least one such subset x, . . . . . .  xi, with 4~ (u~ . . . . . .  uz,) ~> k 2. 

The proof now follows from Lemma 2.10. Q.E.D. 

§3. The general construction of T~ 

We begin with 2 ~ H ( k  2, k2; n), 2k~ ----> k 2, so that  2F-~(/z, v') as in 0.3. We 

make the following 

3.1. ASSUMPTIONS. 
(a) Vk~ > k 4 + k 2, 

(b) mu(Fk), mv(Fk) 4: O. 

3.2. EXAMPLE. Let n > 2k2(k 2 + k 4) and choose nl = [n/2], nz = n - nl " 

nl, nE>_-kE(k z+k4) .  Let now n,=0)~k z + r i  0 < r i < k  2, i = 1 , 2  (so 

o9i >___ k 2 + k 4) and define 

/t = (0)2 + rz, 0)2, • • •, 0)2), v = (0)1 + rl, 0)1, • • •, 0)1)- 
/ u j 

k 2 -  1 k 2 -  1 

and 2 F-~ (/t, v'). Thus 

0)1 i,, t ,, 0 )  2 = 

As was noted in 2.5, mu(Fk), mv(Fk) 4: O. 
We now construct T~, then show later that  en(x)q~ Id(Ek). 

3.3. CONSTRUCTING Tx. Recall that 2t-n n = nl + n2, vt-nl, ltl-nz 2---, 
(/2, v') and m~(Fk), m~,(Fk)4: O. Thus there are (many) tableaux t~ (on 

1 . . . .  , nl) such tha t f , (x )  is not an identi ty Of Fk. We shall pick, in §4, one such 

tableau Tv with fr,(x) ~ Id(Fk). 
Similarly, there is a tableau T u (on 1 . . . .  , n2) such that  eru(x) is not an 

identity of  Fk. 
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We construct: 

T,~ = T;  [(Tu q- hi). 

Here T" is the conjugate of T,; T u + n~ is the tableau on nl + 1, . . . ,  n~ + n~, 

obtained from Tu by adding n~ to each of its entries, and T~ [ (T u + n~) is the 

"glueing together" of  the two tableaux [12, pp. 1422-3]. 

3.4. REMARKS. Let S,,(n~ + 1 . . . . .  n~ + n2) be the symmetric group on 

n~ + 1 . . . . .  n~ + n2 (its order is n2!). Let 

Rr.+.,, Cr,+., C_ S.,(n~ + 1 , . . . ,  n~ + n2) 

be the row and the column permutations of T u + n~, and define Rr.+.,, Cr.+., as 

in 2.1. Clearly 

and hence 

On the other hand, 

Cr~ = Cr. × Cr. +., 

= C T ;  . + , , .  

Rr, ~ Rr;Rr.+.,. 

Choosing a transversal L we obtain 

Rr, = U p(Rr; × Rr,+,,) 
pEL 

a disjoint union. Thus 

/~r, = Y. P(/~r; "]~r,+,). 
pEL 

We choose L such that I ~ L .  Recall that n = n~ + n 2. With the above 

notations we prove 

3.5. LEMMA. For some 0 ~ fl EF,  

er~(xl, . . . ,  x.)  =fl  Y. p(er;(Xl . . . .  , x . , ) 'er ,(x. ,+l, . . . ,  x.,+.)). 
p~L 

PROOF. Note that er; = o / I R T ;  • ~'~T;, er. = a2/~r." Cr., and 

er~(x,, + l, • • •, x., +.2) = °t2Rr~+ n," ~r~+ n~. 
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I f p  ERr,+n, and q E Cr,,, then 

p q  = qp 

since they permute two disjoint subsets of { 1 . . . .  , n }. The proof  now follows 
since 

er~ = al~r~ . Cr~ = a Y. p ( R r ;  "/~r,+n,)(Cr;" Cr,+n,) 
p~L 

= a Y. p( t~r;"  Cr; "/~r~+n," C'r,+n). Q.E.D. 
pEL 

3.6. NOTATION. Denote the various areas of Ta as follows: 

Thus 

T~' = ~ and T~ + nt ~A3  

A3 f 
F 

3.7. REMARK. In 3.4 we can choose the transversal L such that each p ~ L 
is a row permutation of the diagram 

Al A3 S 
l- 

and satisfying the following property: 
If  1 =~ p E L ,  then there is an entry i in A~ (resp. in A3) such that p ( i )  is an 

entry of  A3 (resp. of  At). Also, for any p E L ,  if i is in A2, then p ( i )  = i.  

~4. The construction of Tb 
4.1. REMARK. Let To be a tableau of shape 0. Let T0 be a tableau which is 

obtained from To by permuting any set of  rows (columns) of  equal length. It is 

easy to show that R~o = Rr, and C~0 = Cr,, hence efo = er°. 
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4.2. We fix a tableau tv for whichf , (x)q~Id(Fk)  (3.3), then apply the above 

remark to obtain in 4.6, Tv. Note  that if t, is the conjugate of  t~, then, by 2.7, 

et;(Vl ® X~ . . . .  , v~, ® X,,) 4= 0 

where the vi's are basis elemlents o f  V (§1) and the Xi's are generic k X k 

matrices. 

4.3. DEFINITION. With t~ as in 4.2, define S c N as follows: s ~ S  if  and 

only if there exist u~ . . . . .  u,, ~ E  as in 2.9 with #e (u~ . . . . .  u,,) = s and such that 

e,;(u~ ® X~ . . . . .  u,, ® X,,) 4= O. 

4.4. REMARKS. 

(a) 0 E S, hence S 4= ~ .  
(b) If  s ~ S then s < k 4. 

PROOF. (a) follows from 4.2, while (b) follows from 2.12, since t,( = To) 

has k 2 columns. 

Conclude that there exists s E S maximal,  0 < s < k 4. We then fix u - -  

( u ~ , . . . ,  u,,) with ~ u = s and 

e,;(Ul ® Xt . . . . .  u,, ® X,,) 4= O. 

4.5. LE~MA. Let tv and u =(u~ . . . . .  u,,) be as above ~ with 4~u = s  

maximal  in S. Then there exists a tableau T~ which satisfies: 

(a) er; = e,;. 

(b) l f  ui is o f  even length, then i does not appear in the first k 2 columns o f  Tv 

(so i does not appear in the first k 2 rows o fT ' ) .  

PROOF. By 3. l(a), vk2 >= k 2 + k 4. Thus t~ has Vk2 >= k 2 + k 4 columns of  height 

k 2. Given the above u, let 1 _-< i~ . . . .  , is _-<_ nt be the indices for which the u~j's 

are of  even length. These ij's appear in at most  s columns to tv, and s =_< k 4. Thus 

there are at least k 2 columns of  height k 2, of  t~, which do not contain any of  

these i/s. 

Let T, be a tableau which is obtained from t~ by permuting the columns of  t~ 

of  height k 2 - -  in such a way that it . . . . .  i~ do not appear  in the first k 2 

columns of  Tv. Such T~ obviously exists. Then (b) holds by construction, while 

(a) follows from 4.1. Q.E.D. 

4.6. CONCLUSION. Recall that the tableau T u was chosen in 3.3. It is the 

above tableau T~ of  4.5 that we choose; then, as ment ioned in 3.3, we construct 

Ta = T, [ (T  u + n,). 
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§5. er~(x)q~Id(Ek) 

In order to show that  er~(x) is not an identi ty of  Ek we construct below a 

substitution of  the form xi --" ui ® X~, then show that  er,(u ® X )  v a O. 

5.1. THE SUaSTtTUTION. We choose Ul . . . . .  u,, as in 4.4, 4.5, then choose 

u,, + t . . . . .  u,, +,2 = 1. Now let X1, • . . ,  X,, +,2 be generic k X k matrices, and 

consider the substitution 

X i ~ U i ~ X i ,  1 < i <= n~ + n 2. 

With Tz as in 4.6 and with 4.5 in mind,  we now prove 

5.2. LEMMA. Let 1 v a p E L ,  L a s i n 3 . 4 - 3 . 7 ,  a n d l e t x i - , u ~  ® X ~ a s i n 5 . 1 .  

Then  

(p  [er;(Xl . . . . .  x,,)er, (Xn, + 1 . . . . .  Xn, + n,)])(Xi ~ bl i ~ X i )  

= eT;(Up~¿)® Xp~o, . . . ,  Up<.,) ® Xp<.,)) 

> er,(Up~,,+~)® Xp~,,+~), . . . ,  Up(n|+n2) ® Xp(n,+n2) ) 

~ 0 .  

PROOF. Consider 1 _-< i < n~. By 3.6, 3.7 and 4.5(b), i f  ui has even length, 

then i appears in A2, hence p( i )  = i so Ups,) ( = u~) has even length. Also, there 

exists i0 in A= with p(io) in A3" n~ + 1 <=p(io) < nl + n2. Since u,~+~ . . . . .  

u,,+,, = 1 are of  even length, hence so is Up~o ). It follows that 

. . .  /g > # (Upl O, , p~,,))= S + 1. 

By 4.3 and the maximali ty o f s  ~ S ,  

eT;(Up( O ® Xp(l) ,  . . . , Up(nO ® Xp( , , ) )  = 0 ,  

and the proof  follows. 

5.3. REMARK. Let {u~ ®X~} as in 5.1. It is easy to 

apropriate polynomial g(x~ . . . . .  x,,), 

0 ~ eT;(ut ® X ~ , . . . ,  u,, ® X,,) = ( u t . . .  u,,) ® g(X~ . . . .  , X , ) .  

5.4. THEOREM. With x~ ~ u~ ® X, as in 5.1 and  g ( x )  as in 5.3 we have: 

er2(u ® X )  = er,(u~ ® X~ . . . .  , u,,+,~ ® X , , + , )  

= ( u , .  • • u , , )  ® [ ( g ( X , , . . . ,  X , , ) .  eT,(X,,+ , , . . . ,  X , , + , ) ] .  

Q.E.D. 

see that for an 
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In particular, er~(u ® X) ~ O. 

PROOF. By 3.5 and 5.2 and 5.3, 

f l - ler , (u  ® X)  = er;(ul ® X t , .  . .  , u., ® X,,) 'er,(X, ,+l . . . . .  X.,+.,) 

+ Y. er;(up~l)® Xp~l) . . . . .  up~.,~ ® Xp~,,)) 
1 #p~-L 

× er.(Up¢.,+~)® Xp(nl-]'|) . . . . .  Up{lIl"~n2) ® Xp[nl'det'l,)) 

= er;(ul ® X l , . . . ,  u., ® X,,) 'er,(X.,+z . . . . .  X.,+.,) 

= ( u l ' "  u.,) ® (g(X, . . . . .  X.,)er.(X.,+t . . . . .  X.,+.,). 

Now, g(Xt . . . .  , X.,) ~ 0 by 5.3, and e r , ( X . , + t , . . . ,  X.,+..) ~ 0 since er, q~ 
Id(Ek) and the X,'s are generic. By Amitsur's primeness theorem 
g(X~ . . . . .  X.,).er.(X.,+~ . . . . .  X.,+.,) ~ 0, and hence er,(U ® X) v~ O. Q.E.D. 

5.5. REMARKS AND CONJECTURES. Let A t---(#, v') as in 5.4. It follows 
from 5.4 that ma(Fk) >= 1. Recall that Ta was constructed (3.3) from t~ and T u. 
In fact, there are m,(Fk) tableaux {t,} with {et.(x)} independent over IS . ,  and 
modulo Id(Fk). Likewise we could have chosen mu(Fk) tableaux {Tu}, etc. 

We could have therefore constructed m,(Fk),  mu(Fk) corresponding tab- 
leaux {T~}, and we conjecture that {er,(X)} are independent over I S .  and 
modulo Id(Ek). In other words, we have 

CONJECTURE. Let ;t ~---(/t, v') as above, then 

ma(Ek ) >= mu(Fk ) " rn,(Fk ). 

We also guess - -  but dare not conjecture - -  that 

m~(Ek) ~ mu(Fk)" m~(Fk). 

~6. Applications: bounds for c,(Ek) 

In the next two sections we apply Theorem 5.4, together with some other 
results, to give the bounds for the codimensions that were promised in 

Theorem 0.1. 
We begin with c,(Ek). The upper bound follows easily: 

6.1. LEMMA. There are constants c2 and g2 such that for  all n, 

( )g2 c,(Ek) < C2" (2. k2) ". 
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PROOF. Note that Ek = Fk ® E. By [ 15], 

cn(Fk)--\v/~-~,] . (1) 'k' l)/2.1[...(k_ l)[.ktk2+4)/s(1)tk2 .k2n 

and by [81, c~(E) = 2 "-~. By [10], 

c,(Ek) = c,(Fk ® E) < c.(Fk).c.(E), 

and the proof follows. Q.E.D. 

Note that the proof gives c2 and gs explicitly! 

6.2. TheOREM. There are constants c~, c2, g~ and g2 such that for all n, 

cl (2. kS)" < c,(Ek) <--_ c2 (2. kS) ". 

P R O O F .  The upper bound is given by 6.1. It suffices to prove the lower 

while for ( i , j ) E R ,  hia ~ n/k  2 so that 

Thus 

bound for n large enough. Let n be large, in particular let n >-_ 2k2(k 2 + k 4) and 
let 2 t--,(/t, v') be as in Example 3.2. Thus mv(Fk), mu(Fk)v~ O, hence by 
Theorem 5.4, which was proved under such assumptions, m~(Ek) ~ O. Hence 

c.(Ek) >-_ d~. 

We shall complete the proof by estimating d~ asymptotically. The main tool 
here is [2, §7] (in particular, 7.14.1 there). 

Let ~, be the diagram obtained from v by removing the first k 2 X k 2 rectangle: 
---- (tO l - -  k 2 "t- r l ,  ( to  I - k2)k2-1).  By [2, 7.14.1], 

(6.2.1) d~ (n - k4)! n2 

(h;~ are the "hook" numbers, and R is that k: × k 2 comer rectangle). 
N o w  

n! k 4 ~ n  , 
(n - k4)! 
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(u)-' (6.2.2) (n - -  k 4 ) !  h° ~ k 2 k '  

which  is a cons tan t .  

S i n c e  n2 ~ (n - k4)/2 a n d  n is large, hence  

- c .  1 2 "  

I'/2 

fo r  s o m e  cons t an t  c. 

W e  n o w  e s t i m a t e  d,  ( and  s imi la r ly  d0 :  Recal l  t h a t / t  = (oJ2 + r2, 01k2-I). Let  

O ( x l  . . . . .  xm) = I [  (xi - xj). 
1 "::i<j<m 

By the  Y o u n g - F r o b e n i u s  f o r m u l a  d~ = d~. d2 whe re  

a n d  

d I = 
n2! 

012!(012 + 1)!. • "(012 + k 2 - 2)!(012 + r2 + k 2 - 1)! 

d2 = D(012, 012 + 1 . . . . .  092 + k 2 - 2, oj2 + rE + k 2 - 1). 

NOW, D(012 . . . . .  012 -t- k 2 - 2, 092 + r2 + k 2 - 1) = D(1 ,  2 , . . . ,  k 2 - 1, r 2 q- k 2) 

is a p o l y n o m i a l  in r2; s ince 0 < r2 < k 2 - 1, tha t  p o l y n o m i a l  is b o u n d e d .  

T o  e s t i m a t e  d~ ( o f d , ) ,  app ly  St i r l ing 's  fo rmula :  i f n  is large a n d  a is b o u n d e d ,  

t hen  

( n  + a ) !  '~" q ~ - ~ e - n n n + a v / ~ .  

Since 012 is large, for  all 0 < j  < r2 + k 2 - 1, (092 + j ) ~ + J  ~--e j .01~o~+j, a n d  

x/012 + j -~ x/01v Also no te  tha t  

092 + (092 + 1) + • • • + (to2 + k 2 - 2) + (012 + r2 + k 2 - 1) = n2 + h whe re  

h = ½k(k - 1). 

T h e n  

d~ " d .  01~,+h. x/012k2 (e is a cons t an t )  

(n2]o2. 
= C • - -  0,)~+k2/2~ " 

' ,012/  
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Now, n2/co 2 = k2(1 + rz/k2c02) and k2c02 = n z - r2, hence 

r 2 ] 5  r2 I"~-':(1 + er~.k2.," 

367 

(6.2.4) 

Similarly, 

(6.2.5) 

Here ¢, (, g, g are (explicit) constants. 

Combining (6.2.1)-(6.2.5) we obtain that 

d~c~. (1)g ' (2k2)"  , c~, gl (explicit) constants. 

Since d~ < c,(Ek), the p roof  follows. Similarly when n is odd. 

§7. The algebras F~,l 

In this section we prove Theorem 0.1 for the algebras Ek, ! of  § 1. The upper  

bound  follows from the following three theorems: 

7.1. THEOREM (Berele [1]). 

)c.(Ek,t) = 

We have 

y, 
EH(k  2 + 12,2kl;n ) 

ma(Ek,t) "Xa 

(and the two indices k 2 + l 2 and 2kl are minimal). 

7.2. THEOREM (Berele, Regev [3]). Let A be any P.I. algebra, x , ( A ) =  
Xa~pa.~,)m~(A )'z~ its cocharacters. Then there exists an r such that for all n and 
for all 2kn, ma(A) <= n r. 

Q.E.D. 

Since 0.) 2 " ~  n2/k  2 and h + ½k 2 is bounded,  it follows that 

d I "~ c'. ' g' c ,  constants. 

Assume for simplicity, that n is even. Thus 2n2 = n so k2"~ = k" and we have 

that 
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7.3. THEOREM (Berele, Regev [2, Th.7.21]). 

2 d~ -~ c .  . ( k + W  

where c, g are (explicit) constants. 

As a corollary we have 

7.4. LEMMA. There are (explicit) constants c2, g2 such that 

xn(Ek,l)<_C2(1)g2.(k+ l) 2n. 

PROOF. By 7.1, 7.2 and 7.3, 

d ~ - n r ' c . ( ~ ) g . ( ( k 2 + 1 2 ) + ( 2 k l ) )  ", c.(Ek,t) < n' ]~ 
2 •H(k  2 + l~,2ld;n ) 

and the proof follows. 

We are now ready to prove 

Isr. J. Math. 

Q.E.D. 

1 
c,(Ek,t) > ~ c,(Ek +t), 

and the proof follows from Theorem 6.2. 

With Theorem 0.3, 6.2 and 7.5 in mind, we make the following 

7.6. CONJECTURE. 
that 

Q.E.D. 

Let A = Ek o r  Ek, I. Then there are constants c, g, a such 

c,(A) "~ c" .a".  
n ~ o o  

Thus 

7.5. THEOREM. There exist (explicit) constants cl, c2, g~, g2 such that 

c~. < c.(Ek,i) < c2 . (k  + 

PROOF. Lemma 7.4 gives the upper bound. To obtain the lower bound, 

recall that Ek,t ®FE "~ Ek+t (Theorem 1.2), hence 

c.(E~ +3 = c.(Ek,~ ® E) ~ c.(EkA.c.(E) = c.(Ek,3" 2 ~-I. 
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In  o the r  words  we conjec ture  tha t  a p rope r ty  s imi lar  to  0.3 ho lds  for  any  K-  

p r i m e  algebra. 
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